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Abstract: Substance identification by
infrared spectroscopy is performed by
comparison of the experimental spec-
trum with a reference spectrum from a
printed compilation or a database. If the
analyzed compound can not be found in
a database the corresponding reference
spectrum has to be simulated. In order
to achieve this, several reasonable can-

didates of structures for the compound
at hand have to be conceived and for all
these, infrared spectra have to be devel-
oped. The simulated spectrum that is

most similar to the experimental sug-
gests the correct structure. A rapid
spectrum prediction method based on
neural networks has been developed
that supplies reference spectra for any
organic compound. The scope and lim-
itations of this method will be discussed
on a test set of 16 compounds represent-
ing a broad range of organic chemistry.
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Introduction

Infrared spectra can play an important role in the identifica-
tion of organic compounds. Infrared spectroscopy is a non-
destructive method requiring only small amounts of a sample.
Furthermore, an infrared spectrum has a high information
content which is quite specific for a particular compound. Not
without reason a specific range of an infrared spectrum is
called fingerprint region to stress its significance for the
identification of a chemical compound.

The identification of a compound asks for the comparison
of its infrared spectrum with the reference spectrum of this
compound as taken from a printed compilation or from a
database. There the problem arises: In comparison with the
number of known compounds (more than 16 000 000), the
number of infrared spectra in databases is rather small
(100 000 in the largest database). In order to overcome this
discrepancy, infrared spectra for compounds not included in a
database have to be simulated.[1±3] Infrared spectra can be

calculated by quantum mechanical methods. However, in
order to achieve a good agreement with experiments ab initio
calculations with quite large basis sets or a density functional
theory approach are required asking for substantial computa-
tional time. We wanted to provide a more rapid approach to
infrared spectra in order to be able to generate large sets of
reference spectra within a short time. The relationships
between an infrared spectrum and chemical structure have
then to be learnt from data. In this endeavor, we wanted to
provide high quality infrared spectra covering the entire
spectral range, including the highly significant fingerprint
region which is important for structure identification. This
region shows deformation and skeletal vibrations and strong
couplings between these vibrations. This requirement pre-
cluded the use of a fragment-based approach which can only
provide a few of the bands observed in an infrared spectrum,
predominantly valence vibrations.

Infrared spectroscopy monitors the movements of the
atoms of a molecule in 3D space. Thus, any approach to
learning the relationships between infrared spectra and
chemical structure should first of all start from a representa-
tion of the 3D structure. We have recently developed a novel
representation of the 3D structure, the 3D-MoRSE code (3D-
molecule representation of structures based on electron
diffraction).[4, 5] Based on this work we then introduced a
coding of the 3D structure of molecules by atom radial
distribution functions because we have found a way to
interpret this representation to obtain again a 3D structure.[6]

We will demonstrate here the merits of this structure coding
method for the simulation of infrared spectra. In particular,
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we will investigate how a rather limited database of 13 373
infrared spectra and their corresponding structures allows one
to make predictions over a broad range of organic substances.
This will point out the scope and limitations of this approach
and some deficiencies of such a small database.

Simulation of IR Spectra

Neural networks : The relationship between structures and
infrared spectra is modelled by an artificial neural network.[7, 8]

As illustrated in Figure 1, the neural network used in this

Figure 1. Simulation of an infrared spectrum by a neural network. The
neural network requires a fixed length code for the input (structure
representation) and the output (infrared spectrum).

approach, a counterpropagation (CPG) neural network,[9]

consists of a rectangular arrangement of x� y neurons (for
example 10� 10). Each neuron has z weights (for example
256, 128 for the representation of the structure and 128
absorbance values for the representation of the infrared
spectrum). Neural networks learn inductively; this means that
they learn to model the relationship between structures and
spectra by analyzing a set of examples (molecular structures
and their corresponding infrared spectra) in the so-called
training process. During the training the weights of the
neurons are adjusted to become more similar to the training
data. After training, the neural network is able to predict the
infrared spectrum for a molecule the network has not seen
before from the weights stored in the network. In the

simulation process the Euclidean distance between the
structure code of the query molecule (input) and each neuron
is calculated. The neuron having the lowest Euclidean distance
to the query structure is the winning neuron and supplies the
predicted infrared spectrum in a lookup process as output.

Structure coding : A fundamental requirement of neural
networks is that the input and the output has to be
represented by a fixed number of variables. For the output
this is rather straightforward: Each spectrometer represents
the measured spectrum by a fixed number of variables, for
example, 2000 absorbance values at certain wavenumbers. For
the molecular structure a fixed length representation is not
that obvious. The common representation of chemical struc-
tures by Cartesian coordinates cannot be used since, in this
case, the number of variables depends on the number of atoms
of the molecule. As mentioned above we have developed a
method that transforms the 3D structure of a molecule into a
fixed length code. In the first step, the molecular 3D structure
is generated from the connection table by the automatic 3D
structure generator CORINA.[10, 11] Then, physicochemical
properties (for example the total atomic charges qtot) are
rapidly calculated by empirical methods collected in the
program package PETRA.[12±14] The 3D structure is then
transformed into the structure code, the so-called radialcode,
while simultaneously considering these physicochemical
properties (Figure 2).[15]

This radialcode g(r) is calculated as given in Equation (1):

g(r) � F ´
XN

i�2

Xiÿ1

j�1

Ai Aj eÿB(rÿrij)2 (1)

with:
N : number of atoms
Ai, Aj : atomic property of atom i and j
rij : interatomic distance between atoms i and j
B : temperature or smoothing parameter
F : scaling factor
The code is calculated with the variable r running in discrete

equidistant steps (for example 128 steps) from 0 to 12.8 �.
The resulting code is a sum of all interatomic distances in a
molecule. In Figure 3 the codes for benzene, toluene, and the
three xylene isomers are shown. In order to simplify the
presentation, Figure 3 shows only the values calculated for the
CÿC distances. In the actual simulation experiments the
distances between all pairs of atoms were considered in the
calculation of the codes.

Since the method is based on correlating experimental data,
the computational time and the prediction quality are nearly
independent of the size of the molecule. The prediction
quality highly depends on the data that were used for training.
Two aspects are important: First, it is necessary that the
training spectra are of high experimental quality. For example,
if all training spectra have been taken in insufficiently dried
KBr, the network would learn that each infrared spectrum has
to show a broad band at 3400 cmÿ1, because of the water
contents of KBr.

And secondly, for high prediction quality it is necessary,
that the query structure is well represented by the molecules
of the training set. In the ideal case, the query molecule can be

Abstract in German: Die Infrarotspektroskopie eignet sich
aufgrund der hochcharakteristischen Banden sehr gut zur
Substanzidentifikation. Dazu wird in der Regel das experi-
mentelle Spektrum der zu identifizierenden Substanz mit
einem Referenzspektrum aus einer Datenbank oder einem
Spektrenkatalog verglichen. Ist das gesuchte Spektrum jedoch
in keiner Datenbank enthalten, bleibt dieser einfache Weg der
Substanzidentifikation versperrt. Eine mögliche Lösung ist,
das entsprechende Referenzspektrum zu simulieren. Basierend
auf neuronalen Netzen wurde eine Spektrensimulationsmetho-
de entwickelt, die Zugang zu Referenzspektren für organische
Verbindungen bietet. Die Möglichkeiten und Grenzen dieser
Methode werden anhand eines Datensatzes von 16 Testver-
bindungen, die einen breiten Bereich an funktionalen Gruppen
abdecken, diskutiert.
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Figure 3. The radial distribution function (RDF) code for benzene
derivatives. The first three peaks correspond to the 1 ± 2, 1 ± 3, and 1 ± 4
CÿC distances in the benzene ring.

interpolated between structures of the training set. A CPG-
neural network is a very good interpolator, whereas its
extrapolation abilities are poor.

For the selection of the training molecules the structure
code of the query structure is compared with the structure
codes of all entries in the structure and spectra database
(Figure 4). The criterion for comparison is the root mean
square (rms)-error in the values of RDF code. Those
50 molecules showing the highest similarity with the query
structure code were taken into the training set.

Figure 4. Query driven selection of the training set. The 50 molecules
having the most similar structure code compared with the query structure
were taken for the training of the neural network.

This approach offers a high
potential for the adaptation to
the problem, since each query
molecule defines its own train-
ing set and its own specially
trained network.

Computational Methods

In principle, the method can
be applied to arbitrary com-
pounds. The spectra that were
used for training are taken
from the SpecInfo[16] infrared
spectra database. The aim of

this experiment was to analyze if a limited database such as
this with 13 373 molecules supplies sufficient information to
perform reasonable simulation experiments.

The test set

To test the applicability of the method, 16 compounds with a
variety of structural features were selected by independent co-
workers to cover a wide range of chemistry. Twelve com-
pounds had only one functional group and can be assigned to
a specific substance class, whereas four compounds contain a
combination of two or more functional groups. The analysis of
the simulation for these combinations of functional groups is
of particular interest, since it illustrates whether the system is
able to react on spectral changes that might be caused by these
structural features. The 16 test compounds are shown in
Scheme 1.

It must be mentioned that the spectra of compounds 1, 2, 3,
6, 7, 8, 9, 13, 14, 15, and 16 are included in the SpecInfo
database, but these spectra were not used for the training of

Scheme 1. Molecules of the test set.

Figure 2. Transformation of a 3D molecule structure into a fixed length code. In the first step the structure
drawing is converted into a 3D structure. After calculating physicochemical properties, the 3D structure is
transformed into a structure code.
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the neural network. Therefore the experiment was performed
as if these compounds were unknown. Liquid substances were
taken as films, waxy substances were melted. The spectra were
described by 128 absorbance values between 3500 and
560 cmÿ1 with a resolution of 40 cmÿ1 between 3500 and
2020 cmÿ1, and a resolution of 16 cmÿ1 between 2000 and
560 cmÿ1.

Results and Discussion

A query driven infrared spectrum simulation experiment was
performed for all molecules of the test set (Scheme 1). The
spectrum simulation approach described here is quite fast. It
takes 90 seconds on an SGI ORIGIN 200 from the input of
the structure to the output of the simulated spectrum. The
computation time includes the 3D structure generation, the
calculation of physicochemical properties, the transformation
into the structure code, the selection of the training set, the
neural network training, and the spectrum prediction process.
It should be emphasized that neural networks allow a
separation of the more time-consuming training phase from
the test phase making the latter nearly instantaneous. This can
be achieved when a neural network is needed for a set of
related compounds, for example, for substituted benzene, or
quinoline compounds. Here, however, we decided to use the
query directed approach that merges training and test phase
in order to explore which structures are included in the
database that are similar to each individual molecule of the
test set. The simulation quality was determined by calculating
the correlation coefficient r,[17, 18] between simulated and
experimental spectra. For a better visual comparison of the
simulated and the experimental spectra the absorbance values
of the experimental spectra were adjusted by setting the
lowest value equal to 0, which has no effect on the correlation
coefficient r. [It has to be emphasized that the symbol r is used
for the correlation coefficient as is standard use. However, this
use of r has to be distinguished from the distance variable r
used in Eq. (1).]

From the spectroscopic point of view the correlation
coefficient r has weaknesses since it is a statistical measure
that does not emphasize the position and the relative intensities
of important bands. Analyzing the simulation experiments
and the training data we observed that experimental spectra
from the training set have a higher correlation coefficient with
the query spectrum than the simulated spectrum, even if the
correspondence of bands is similar. So the simulated and the
experimental spectrum still have to be compared by visual
inspection to analyze how good the important bands and the
overall shapes were reproduced. This will be discussed in
detail with some simulation examples. However, the correla-
tion coefficient r is quite a reasonable similarity measure for
the comparison of IR spectra since it is less sensitive to
differences in absolute intensities than, for example, the rms
error. Figure 5 shows the distribution of the calculated
correlation coefficients for the 16 simulation experiments.

It can be observed that in the majority of cases the
simulated spectra show high similarity with the experimental
data: six spectra with r> 0.9, six spectra with 0.9> r� 0.8, two

Figure 5. Distribution of the correlation coefficient r of the simulated
versus the experimental spectra.

spectra with 0.8> r� 0.7; however, there are also two spectra
with r< 0.2.

The experiments showing very high and very low corre-
spondence with the experimental data will be discussed in
more detail. Figure 6 shows the simulation for decanoic acid

Figure 6. Comparison of simulated and experimental spectrum of com-
pound 8. In addition, the training spectrum having the highest correlation
coefficient with the experimental spectrum is displayed, i.e., 10-undecenoic
acid.

(compound 8) having the highest correlation coefficient r�
0.960. In addition the training spectrum having the highest
correlation coefficient (r� 0.977) with the experimental
spectrum of compound 8 is displayed. This is the spectrum
of 10-undecenoic acid.

Simulated and experimental spectrum of compound 8 show
very high similarity. Even the signals in the fingerprint region
are reproduced very well. The reason for this high quality
simulation result is that the query structure is quite well
represented by the molecules in the training set. A detailed
analysis of the neural network will illustrate this. As shown in
Figure 1 the neural network has a square arrangement of 10�
10 neurons. In the approach described in this publication the
neurons of the network are connected in a toroidal manner,[7]

so the neurons in row 10 are connected to the corresponding
neurons in row 1. In the same way the neurons in column 10
are connected to the corresponding neurons in column 1.
Therefore each neuron has eight neurons in its first neighbor-
hood sphere. Figure 7 shows a view on the top of the neural
network and the structures that were assigned to certain
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Figure 7. Detail of the neural network showing the winning neuron and the
first sphere of neighboring neurons with the compounds from the training
set.

neurons during training. It displays a zoomed part of the
neural network with 3� 3 neurons containing the winning
neuron in the center (marked with a gray circle) and its first
sphere of neighboring neurons.

The winning neuron contains nonanoic acid, which is very
similar to the query structure, that is decanoic acid, with only
one additional CH2 group. Since the query structure contains
eight CH2 groups, this difference has only a minor effect on
the shape of the spectrum. Although the molecules in the first
neighboring neurons show more structural deviations to the
query structure, they are nevertheless aliphatic carboxylic
acids and can therefore contribute to a high quality simu-
lation. Only the molecule in neuron 1,5 (10-undecenoic acid,
SpecInfo ID ST0000199568) with one C�C double bond has
an additional functional group. It is interesting to mention
that in spite of this structural deviation this spectrum has the
highest correlation coefficient with the query spectrum of all
training spectra and the simulation result. This stresses again
the importance of the visual inspection of simulation results.
The simulation for (ÿ)-menthol (compound 7, see Figure 8) is
also of high quality, as indicated by a correlation coefficient of
r� 0.955.

Figure 8. Comparison of simulated and experimental spectrum of (ÿ)-
menthol (compound 7).

Again, the simulated and the experimental spectrum show
high correspondence. Even the shape of the fingerprint region
is very well reproduced. As in the example of compound 8 the
reason for the high quality simulation is that the query

structure is well represented by the molecules of the training
set. All molecules in the neurons directly adjacent to the
winning neuron have a cyclohexane ring (in one case a
decaline system) and an OH group.

The correlation coefficient r� 0.739 for the simulation of
compound 9 (Figure 9) is more at the lower end of the
similarity scale. The simulated spectrum and the spectrum

Figure 9. Comparison of simulated and experimental spectrum of dl-
mandelic acid (compound 9). In addition, the training spectrum having the
highest correlation coefficient with the experimental spectrum of dl-
mandelic acid is displayed, i.e., benzilic acid.

from the training set having the highest correlation coefficient
with the query spectrum (benzilic acid, SpecInfo ID
ST0000199520) show a similar correspondence of their signals
with the signals of the query spectrum. Simulated and
experimental spectrum still correspond in their shape. The
largest deviations can be observed in the fingerprint region.
An analysis of the molecules that have been used for the
training of the neural network gives an explanation for this
result (Figure 10).

Figure 10. Detail of the neural network showing the winning neuron and
the first sphere of neighboring neurons with the compounds from the
training set.

The training molecules that have been assigned to the
neurons in the first neighboring sphere of the winning neuron
show structural similarity with the query structure. All
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molecules contain a carboxyl group and a phenyl substituent
except for the molecules in neuron 2,3. However, some
molecules also have structural features that cannot be found
in the query structure, for example, acyclic structures,
halogen, or amino substituents, leading to deviations in the
fingerprint region which cause a correlation coefficient r of
only 0.739. Furthermore, it should be noted that the infrared
spectrum was that of the racemic compound 9, whereas for the
structure input and 3D structure generation a specific stereo-
isomer had to be chosen.

Finally, the two examples showing very low simulation
qualities will be discussed in more detail. The simulation
experiment for compound 11 b-alanine basically represents
no similarity to the experimental spectrum (Figure 11).

Figure 11. Comparison of simulated and experimental spectrum of b-
alanine (compound 11).

The reason for this low simulation quality will become more
obvious from an analysis of the molecules that have been used
for the training of the corresponding neural network. The
neurons in the first neighboring sphere to the winning neuron

do not contain any amino acids
(Figure 12). The molecules have
hardly any important structural
features in common with the
query structure. This indicates
that the error does not occur in
the step of the neural network
prediction but in the step of the
training set selection. The sys-
tem was not able to select
appropriately similar molecules
for training. It has to be realized

that the structure of b-alanine as in Scheme 2 used for the
simulation experiment reported in Figure 11 and 12 is
basically not correct, because b-alanine exists as zwitterion.

Thus, it is interesting to investigate whether the simulation
quality improves if the query structure is submitted as
zwitterion. Figure 13 shows the result of this experiment.
The simulated and the experimental still show fairly large
deviations but the correlation coefficient of r� 0.444 indicates
a much higher correspondence between the two spectra than
in the simulation before (cf. Figure 11). An analysis of the
training compounds used for training, particularly those in the
vicinity of the winning neuron (Figure 14) gives an explan-

Figure 12. Detail of the neural network showing the winning neuron and
the first sphere of neighboring neurons with the compounds from the
training set of query compound b-alanine (compound 11)-

Figure 13. Comparison of simulated and experimental spectrum of b-
alanine (compound 11) as zwitterion-

Figure 14. Detail of the neural network showing the winning neuron and
the first sphere of neighbors with the compounds from the training set of
query compound b-alanine (compound 11) as zwitterion

ation for this increased simulation quality: In the experiment
in which the amino acid was submitted as zwitterion, the
system found other amino acids in the database and used them
for training the network. Since these database entries were
stored as zwitterions, they had not been recognized as being
similar in the experiment before, where the query amino
structure was submitted with neutral amino and carboxylic
group Figure 11 and 12).

This experiment underlines the importance of an appro-
priate description of a query structure. The system can only

Scheme 2. a) b-alanine as neu-
tral molecule and b) as zwitter-
ion.
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recognize structural similarity if the submitted compound is
described in the same way as the compounds in the database.

The next experiment discussed in detail is the spectrum
simulation for styrene (compound 15). Again, the simulated
and the experimental spectrum show very low correspond-
ence Figure 15) with a correlation coefficient r� 0.153.

An analysis of the neural network supplies further infor-
mation. Figure 16 shows the winning neuron (marked with a
circle) and two neighboring spheres. All of the displayed

Figure 15. Comparison of simulated and experimental spectrum of styrene
(compound 15)

Figure 16. Detail of the neural network showing the winning neuron and
the first two spheres of neighboring neurons with the compounds from the
training set of query compound styrene (compound 15).

training molecules show structural features that can also be
found in the query structure: a benzene ring and an alkene
group. The two training molecules from the winning neuron
show high similarity with the query structure: Whereas
styrene has a benzene ring substituted with a vinyl group,
one training structure is substituted with a 1-propenyl and
another one with a 1-butenyl group. These rather small
structural deviations, however, cause an enormous effect from
the spectroscopic point of view, because infrared spectroscopy
reacts very sensitive whether or not a compound has only
olefinic or aliphatic structural features. The additional CH2

groups in the two training molecules cause quite a few bands

that are absent in the query structure. The rule to be learnt is
that in this approach, structures with only a few features that
are active in an infrared spectrum will usually lead to a lower
simulation quality. By analyzing the training structures any
spectroscopist could estimate that this particular simulation
result might not be reasonable.

Internet access : This spectrum prediction method can be
accessed through the internet (http://www2.ccc.uni-erlan-
gen.de/IR/). This web page features interactive simulation
experiments and database searches. The simulation experi-
ments described in this article are stored on the server and can
be retrieved with the keyword ªpublicº following the
open-link at the page http://www2.ccc.uni-erlangen.de/IR/
simuframe/.

Summary and Conclusions

Infrared spectroscopy is, as a result of its highly characteristic
bands, very useful for the substance identification by compar-
ing the experimental spectrum with the reference spectrum
from a database. Because of the very unfavorable relation
between the amount of 16 000 000 known compounds and the
number of only 100 000 infrared spectra in the largest IR
spectra database, this easy way of substance identification
often fails. Therefore, there is a need for spectrum prediction
methods to close these data gaps. In this article, a spectrum
prediction method based on neural network techniques was
presented that provides rapid access to arbitrary reference
spectra. Since the method is based on experimental data we
investigated if a database with 13 373 infrared spectra supplies
sufficient spectral information to perform reasonable predic-
tion experiments.

The experiments reported herein have shown that the
presented spectrum prediction method can provide reason-
able prediction results for a broad range of organic com-
pounds. From a test set of 16 compounds selected by
independent scientists, six spectra show a correlation coef-
ficient r> 0.9 between simulated and experimental spectrum
and therefore give very high correspondence. An additional
six simulated spectra have a correlation coefficient of 0.9�
r> 0.8 indicating high similarity. Two spectra show a corre-
lation coefficient of 0.8� r> 0.7 which still displays accept-
able similarity between simulation and experiment. Only two
spectra give an r< 0.2 which indicates poor similarity. The
reason for this low correspondence could be clarified. Since
the prediction method is based on data, the simulation quality
is the higher the higher the similarity between the query
structure and the training structures is. Therefore, important
information can be derived from analyzing the compounds
that have been used for the training of the neural network.
This information allows the user to estimate how reliable the
prediction experiment is. The overall success of this method
for IR spectra prediction attests to the power of the radial
distribution function to code important 3D information on
molecules.
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